Proton Economics & Sub-Program Compatibilities

Number of Protons vs Beam Power - 1

8 GeV Linac provides 1.5×10^{14} protons/pulse

Presently favored scheme: Linac cycles at 2.5 Hz, with an upgrade to cycle at 10 Hz.

The MI takes one Linac pulse every 1.5 sec, & hence accelerates 1.5×10^{14} protons to 120 GeV every 1.5 secs.

 1.5×10^{14} protons at 120 GeV every 1.5 secs corresponds to 2MW on target

The 8 GeV and 120 GeV programs can run together:

8 GeV Linac			$POT / 10^7 secs$	
Cycle	Beam	Protons	8 GeV	120 GeV
<u>Time</u>	Power	per 10 ⁷ s	Program	Program
2.5 Hz	0.5 MW	3.8×10^{21}	2.8×10^{21}	1×10^{21}
10 Hz	2 MW	1.5×10^{22}	1.4×10^{22}	1×10^{21}

For comparison:

NuMI with 0.25 (0.4) MW \rightarrow 1.3 (2) × 10²⁰ protons/ 10⁷ secs MiniBooNE with ~36 KW \rightarrow 2.5 × 10²⁰ protons/ 10⁷ secs (Note: 8 × 10¹⁸ protons/week × 42 weeks = 3.4 × 10²⁰ protons / year)

Compatibilities

To understand which sub-programs are compatible or incompatible we need some design work on the interface between the beam and the experiments ... beam matching etc (everyone wants a different bunch structure, for example)

However, there are a couple of things that can be said ...

Kaon Program at the MI

Mode	Sample	Physics	Number of	Protons on Target
$K^+ \rightarrow \pi^+ \nu \nu$	1000	3% (V.,	*V.,)	1.5 x 10 ²⁰
$K_{_{\rm I}} \rightarrow \pi^{\rm o} \nu \nu$		Lo	ter	1.6×10^{21}
$K_L \rightarrow \pi^0 ee$	$2x10^{4}$	10% Im($V_{ts}^*V_{td}$	2.5×10^{20}
$K_{s}-K_{L} \rightarrow \pi$	⁰ ee 5×10 ⁵	10% Im	$(V_{ts}^*V_{td}^{})$	5×10^{23}

Needs slow spill, which is in conflict with the neutrino program which needs fast extraction. A second ring can resolve the conflict. A $K^+ \to \pi^+ \nu \nu$ experiment receiving 1.5×10^{20} POT could be done with slow spill in a few months dedicated run, or a longer run with fast extraction to a bunch-stretcher and a 10% tax on the ν program. In contrast, $K_L \to \pi^0 \nu \nu$ presumably would require a second ring & lots of running

Pion Program at 8 GeV

The feeling amongst the pion enthusiasts at our October Workshop was that the pion program requires a modest number of POT.

The Pion/Kaon group is working on producing a table summarizing number of POT required for various pion measurements ... the tricky bit is understanding the relevant efficiencies. We are hoping to have the desired table in a couple of weeks.

Brice, Geer, Paul & Tayloe

Muon Program at 8 GeV

We know how many low energy muons we can produce/year, but until we have designed a muon source, we do not know the efficiency for utilizing the muons ... except for stopped muons:

	FNAL 2 MW	SNS 1.4 MW
	at 8 GeV	at 1.3 GeV
P/yr	1.6×10^{22}	6.7×10^{22}
DAR (v/p)	1.5	0.13
DAR (v/yr)	2.3×10^{22}	0.92×10^{22}
ν _e Events/yr	8900 ε _{REC}	$3500 \; \epsilon_{ m REC}$
v_{μ} Events/yr	$1500 \ \epsilon_{ m REC}$	$600 \varepsilon_{\mathrm{RFC}}$
v_{μ} Events/yr	$3200 \epsilon_{REC}$	$1200 \epsilon_{ m REC}$

Neutrino production from Decays At Rest

Event rates for a MiniBooNE-like detector at L = 60 m (scaled from G. Van Dalen nucl-ex/0309014)

How to Proceed on Understanding the Muon Program at 8 GeV

We need to design and cost the source. This probably requires a director-sponsored study with some engineering support.

The interface between the muon source and the experiment is experiment-dependent. The source design work must include the design of the interface (beam matching) for the most promising experiments.